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Abstract

Variational principles for a wide class of functional can be constructed in a routine fashion. The
procedure is illustrated by deriving a stationary expression for the resonant frequencies of a cavity,
Shwinger’s variational principle, and a variational principle for a function itself.

Introduction

Different procedures - such as Rumsey’s reaction
conceptl, Cairo and Kahn’s transpose-operator and
field technique, and Hamilton’s principle of least
action3 - have been employed in the literature to
derive variational principles in electromagnetic
field problems. Recent work on variational princi-
ples in mathematical physics4 should enable one to
construct in a novel way stationary expressions for
a wide class of functional P(E~, where ~is an
unknown (vector) function. This is accomplished by
accounting for each of the equations (constraints)
that define ?via a Lagrange undetermi ed multiplier,

#which can be-a constant A, a function (x,Y,z), and
an operator r. For example if~ represents a
normalized electric field, which obeys the wave
equation, then the normalization constraint will
require a constant multiplier while the wave equa-
tion, which is a constraint at each point in space,
will require an undetermined function.

The method of constraints has the advantage that
it is systematic and applicable to a wide class of
problems. The following three examples will
illustrate the details of the procedure.

Resonant Frequencies of Cavity

Here we derive Berk’s5 stationary expression
for the resonant fr quencies of a cavity in terms of
theelectric field?. Now,

-V(*XF)+E(JC)2F=[-HO+E(LJC)2]?=O> (1)

where

HOEVX;VX . (2)

I.I,C,U,C are the relative permeability, permittivity,
angular frequency, and speed of light, respectively.
The problem has t o constraints, Eq. (l), and the

Fnormalization of , ~E*EdT = 1. With the dagger
representing the Hermitian adjoint and dT the ele-
ment of volume. The variational principle can now
be written down routinely

[j@~(~/c)2~dTlvar : [j;%o~d~lvar ❑ J’&o~tdT

are
and
are

the trial electric field, constraint
constraint multiplier, respectively.
determined by the requirement that

(3)

(4)

functio~
A and F

@HotdT = @%o;dT-f~t%o$dT

vanishes to first order in d;. Neglecting second-
order terms, it follows for U,C Hermitean tensors that

[h’0-E(w/c)2]F +Ho;+a L o (5)

Multiplying Eq. (5) with ~ and integrating, one
obtains

a = -@Ho~d~ (6)

Therefore

[Ho-&/c)2];=;j;” ffo;drffo; (7)

Wittj ~~?dT= 1 and the help of (7) [replacing ;,;
by F&tj, ~q. (3) reduces to

[J~~s(w/c)2F]var = ~@o$dT (8)

Thus

(W/C)2 ‘ j~tffo~dd[&~dT] (9)
+

is stationary for Etan =0 on conducting surfaces, the
above equation reduces to Berk’s expression

(W/C)2 = ~(VX;)%-l(VXi)dT/[~~e:dT] (10)

Schwinger’s Variational Principle

As another illustration of the constraint method,
we show how to construct Schwinger’s variational
principle for the scattering of an electroma netic

twave by a dielectric obstacle in a waveguide .

For simplicity, the obstacle is synnnetric with
respect to a plane perpendicular to the direction of
propagation z. The problem can be analyzed in terms
of even and odd waves. We will consider only the odd
case. The wave equation can be written

-vxvx~+c(w/c)2~= [-H+(w/c)2];=0, (11)

where

H = VXV+(l-e)(w/C)2 ; (12)

we assumed u=l. The odd standing wave solution of:
satisfies ~o(o)=O and has the asymptotic form for Z*

~o(x,y,z) =~(x,y)[sin(kz+e)-tan(n;e)cos(kz+e)], (13)

where ~(x,y) is the form function of the7propagating
mode, k is the propagation constant, and

tan(no-e) = k-lj(s-l)(w/c)2&&in(kz+e), (14)

tanno = -i(Z11-Z12) . (15)
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13is a parameter which introduces an additional
degree of freedom and will be utilized later on. no
is the (so-called) odd phase shift, and Z 1 and Z,2

iare elements of the impedance network of he obstacle,
Now fromEqs (11) and (14),

tan(no-e)=k-l~;sin(kz+e)~[tfo- (u/c)2]?od~, (16)

where

Ho = ff+w

w= (e-l)(u/c)2

The variational principle for

k[tan(no-e)]var= J’_&.in(kz+e)

-~~to[tf-(u/c)2 ]Fotd~

~ is specified by letting the
be zero. One obtains

@.in(kz+6). [Ho-( u/c)2]6~otd7

tan (no-e) reads

[Ho- (@/C)2]~otdT

first variation of

-j~@(u/c)z]6~otd~ = O.

Integrating by parts it follows that

[ff-(u/c)2]F = o,

and that

;=;

Therefore

(17a)

(17b)

(18)

(18)

(19)

(20)

(21)

k[tan(no-e)] var.=ktan(not-e)-~~ot “[H-(u/c)2]~otd~
(22)

For e=o, this is equivalent to Kohn’s variational
principle in quantum mechanics.

Letting esm/2 and adding the second-order term

~[(H-W2/c2)Eot] 2W-ld~ to (22), one obtains

(kcotn~var = kcotnot+~tot~[H-(w/c)2]~otd~

+~[(H-u2/c2)~ot]2W-ldT (23)

As shown by Kato8, this is equivalent to Schwinger’s
variational principle, p. 51 Ref. [6]. Namely,

Cotllo = 1“

Z1l-Z12
i

++
where the Green’s function Go(x,y,z;x,y,z) satisfies
the equation

[-VXVX+ (w/c) 2fio= 36(;-;/) (25)

and the appropriate boundary conditions. ~ is the
idemfactor.

Variational Function

The construction of a ~aria~ional function~vaP
with no first-order error 6E In E will serve as a
final aexample. The functional P(L ), evaluated
with Ev r, ~ar

will clea~ly be a varia Tonal expression
of the ?unctional P(E). Proceeding as before, one
writes

The re~uirement that (26) contain nO first-order er-
rors 6E and b~leads to

[-H+(u/c)2]?= -~6(~-;’), (27)

qnd certain boundary conditions on?. In other words,
r is a Green’s function. Th& replacement of?in ~26)
by a trial Green’s function rt yields the desired Evar,
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