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Abstract

Varia@iopa] principles for a wide class of functionals can be constructed in a routine fashion. The
progedure is 1]1u§trated py qer1v1ng a stationary expression for the resonant frequencies of a cavity,
Shwinger's variational principle, and a variational principle for a function itself.

Introduction

Different procedures - such as Rumsey's reaction
conceptl, Cairo_and Kahn's transpose-operator and
field techniquez, and Hamilton's principle of least
action3 - have been employed in the literature to
derive variational principles in electromagnetic
field problems. Recent work,on variational princi-
ples in mathematical physics™ should enable one to
construct in a novel way stationary expressions for
a wide class of functionals P{E), where E is an
unknown (vector) function. This is accomplished by
accounting for each of the equations (constraints)
that define E via a Lagrange undetermined multiplier,
which can be_a constant 1, a function F(x,y,z), and
an operator T. For example if E represents a
normalized electric field, which obeys the wave
equation, then the normalization constraint will
require a constant multiplier while the wave equa-
tion, which is a constraint at each point in space,
will require an undetermined function.

The method of constraints has the advantage that
it is systematic and applicable to a wide class of
problems. The following three examples will
illustrate the details of the procedure.

Resonant Frequencies of Cavity

Here we derive Berk's® stationary expression
for the resonant frgquencies of a cavity in terms of

the electric field Now,
-v(JoxE) re (w/c) 2B -H e (w/c) 2 JE=0, )
where

Ho = vx L ux . (2)

U.e.w,C are the relative permeability, permittivity,
angular frequency, and speed of 1ight, respectively.
The problem has two constraints, Eq. (1), and the
normalization of E, [EYEdt = 1. With the dagger
representing the Hermitian adjoint and dt the ele~
ment of volume. The variational principle can now
be written down routinely
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where

> - S 2 _ (4)
Et = E+6E, Ft = F+sF, Ap = M8

are the trial electric field, constraint function,
and constraint multiplier, respectively. A and F
are determined by the requirement that
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vanishes to first order in SE. Neglecting second-
order terms, it follows for u,e Hermitean tensors that

[Hy-e(u/c)2JF + H_ERE = 0 (5)

>
Multiplying Eq. (5) with E and integrating, one
obtains

>
"
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Therefore
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With [fﬁffédr= 1 and the help of (7) [replacing F,E
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by Fuky q. (3) reduces to

[fE*e(w/c)ZE]var = fEtTHOEth (8)
Thus

(w/c)2 = [EH Ede/[[Etetdr) (9)

>
is stationary for E¢an =0 on conducting surfaces, the
above equation reduces to Berk's expression

(0/c)? = [(7XE) ™1 (vxE)de/[ [E ebdr] (10)

Schwinger's Variational Principle

As another illustration of the constraint method,
we show how to construct Schwinger's variational
principle for the scattering of an electromagnetic
wave by a dielectric obstacle in a waveguide®.

For simplicily, the obstacle is symmetric with
respect to a plane perpendicular to the direction of
propagation z. The problem can be analyzed in terms
of even and odd waves. We will consider only the odd

case. The wave equation can be written
~vxxE+e (0/c)2E = [-#+(w/c)?]E =0, (11)
where

H = xv+(1-¢) (w/c)? ; (12)

we assumed p=1. The odd standing wave solution of E
satisfies E,(0)=0 and has the asymptotic form for z+»

Eo(x,y,z) = Z(x,y)[sin(kz+e)—tan(nge)cos(kz+e)],(13)

where e(x,y) is the form function of the7propagating
mode, k is the propagation constant, and

tan(ng-6) = k™1f(e-1)(w/c)2Esesin(kz+o), (14)

tamng = ~i(Z)1-Zy,) (15)



6 is a parameter which introduces an additional
degree of freedom and will be utilized later on. g
is the (so-called) odd phase shift, and Zy; and Z1o
are elements of the impedance network of the obstacle
Now from Eqs (11) and (14),

tan(n -8)=k1fEsin(kz+e) *[Hy- (w/c) 2 € dr, (16)
‘where
Hy = HeW (17a)
W= (e-1)(w/c)? (17b)

The variational principle for tan (n,-8) reads
k[tan(no—e)]var = fgsin(kz+e)'[Ho-(m/c)z]?otdr
- [Py [H-(w/c)2JEped (18)

-
F is specified by letting the first variation of (18)
be zero. One obtains

fEsin(kz+e)-[Ho-(w/c)z]sfotdr

> ->
-fF-[H-(w/c)z]sEotdr = 0. (19)
Integrating by parts it follows that
[H-(u/c)2TF = 0, (20)
and that
> =
F=E (21)
Therefore

. >
k[tan(no—e)] VaY‘.=ktan(not-6)-IEot . [H-(w/C)z]Eotd'r (22)
For 0z0, this is equivalent to Kohn's variational
principle in quantum mechanics®.

Letting 6=n/2 and adding the second-order term
JU{H-02/c2)E_ 12W 1dr to (22}, one obtains
ot

- -+
(kcotnéyar = kcotnot+fE0t‘[H—(m/c)z]Eotdr
[ (H-u?2/c2)E 120 e (23)

As shown by Katos, this is equivalent to Schwinger's

variational principle, p. 51 Ref. [6]. Namely,
cotn_ = 1 i
o —
Inh, ¥
= JWE2de- fU(F)E () B (F/)E (F/) dede/
[fwdsinkzeEqdr]2

(24)
g

where the Green's function o(x,y,z;x,y,z) satisfies

the equation

[-9xvx + (w/c)2T8, = Ts(r-71) (25)

and the appropriate boundary conditions. *f is the
idemfactor.

Variational Function

-
The construction of a variagional function E,
with no first-order error SE in E, will serve as a
final_example. The functional P(E ar.), evaluated
with E, ..., will cleagly be a variationat expression
of the ?unctiona] P(E). Proceeding as before, one
writes
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Erar(®)z B, HfFE RN -HR (0/0) 28 (37 )0/

(26)

The regyiremen; that (26) contain no first-order er-
rors SE and 6T Teads to

[-#+(w/c)2]1 T = Fs(r-r?), (27)

. ‘s -

and certain boundary conditions on T. In other words,
T is a Green's function. Theg, replacement of T in ggs)
by a trial Green's function Ty yields the desired Evar «
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